Energy-Efficient Strain-Programmable Probabilistic Bits
The manipulation of quantum properties of electrons to store information has been used for decades, and its continued study is key to the development of new fields such as spintronics and quantum computing. The discovery of strain-induced properties of stacked CrSBr layers promises advances in both unparalleled control of key material properties, as well as energy efficiency, in the development of new information storage components.
Twisted MoTe2 Bilayer Device for Qubit Technologies
In the quest to unlock the potential of quantum computing, researchers have delved into the realm of quantum materials seeking to harness their unique properties such as the quantum Hall effect. This technology demonstrates the long-predicted fractional quantum anomalous hall effect, using twisted bilayers of molybdenum ditelluride in a novel multi-gate transistor device to demonstrate the effect in practice. This technology shows vast potential as a laboratory for experimenting with the fractional quantum anomalous hall effect, and as a transformative innovation working towards realizing a topological quantum computer.