A Method to Direct the Differentiation of Human Induced Pluripotent Stem Cells into Ameloblasts and Odontoblasts
These present technologies offer a foundation for the development of periodontal regenerative therapies and further study of periodontal diseases affecting enamel and dentin formation.
Cell Barcoding for Multiplexed Pooled Screening of Perturbations in Cells
The solution is a novel pooled screening approach, called CellCode, that utilizes lentiviral barcoded libraries to encode perturbation histories in cells that are then decoded in downstream assays.
De Novo Designed Protein Binders Targeting TGFβRII, CTLA4, and PD-L1
Novel protein minibinders which bind to convex protein target sites on TGFβRII, CTLA4, and PD-L1 with high affinity and potent biological activity are the solution.
Deep Learning Approaches for Protein Scaffolding
This technology uses advanced deep learning methods to design proteins with specific functional sites, offering a novel approach to protein design that is both efficient and versatile.
Glycosylated Nanoparticles for Vaccines
The solution is a method to engineer glycoproteins onto the surface of protein nanoparticle vaccine scaffolds to enhance vaccine-elicited immune responses.
High-Throughput Drug Screening of Cancer Stem Cells
This invention discloses methods for designing a personalized therapeutic regimen for patients with AML based on an individual's unique drug sensitivities. The methods offer clinical utility beyond the scope of standard diagnostics and assays and allow clinicians to tailor treatments based on a patient’s cancer stem cell chemosensitivity.
High-Throughput Drug Screens on a 3D Tumor-on-a-Chip to Monitor Cancer Cell Viability and Migration
The solution is a three-dimensional human renal cell carcinoma (RCC)-on-a-chip for screening drugs that could be developed as anti-metastasis agents.
Increasing In Vivo Success of Stem Cells with GSK3 Inhibition
The disclosed innovation provides methods for increasing populations of hematopoietic, mesenchymal, mesodermal, or neural progenitor/ stem cells in vivo in a mammalian subject.
Injectable Recombinant Protein-Based Hydrogels for Therapeutic Delivery
The solution is a self-healing protein-based hydrogel that supports minimally invasive cell delivery through catheter injection.
Metabolite Biomarkers for the Detection of Colorectal Cancer
The technologies offer a simple yet powerful method for identifying serum markers of disease in colon cancer from peripheral blood. These technologies offer high sensitivity and specificity as compared to standard diagnostic methods such as colonoscopy but offer additional utility as they require no in-office clinical procedure. Together, they offer a promising new diagnostic and monitoring tool to support clinical decision making in colon cancer.
Mixed Chirality Peptide Macrocycles with Internal Symmetry
This technology leverages computational design to create mixed chirality peptide macrocycles with internal symmetry, offering a new avenue for therapeutic and nanomaterial design.
Omega Muricholic Acid: A Novel PXR Ligand to Treat Hepato-Intestinal Diseases
The innovation offers a novel, murine-specific bile acid known as omega muricholic acid (wMCA). The technology has shown to be a promicing new avenue for the clinical management of inflammatory bowel disease (IBD).
Repurposing Combinations of Approved Drugs for Viral Outbreak Response and Readiness
The collection of technologies offers a simple yet powerful method for identifying combinations of previously FDA approved drugs with synergistic activity against viral infections. The technology is available for immediate use in preparation IND-enabling studies in high impact viral disease areas.
Transmembrane Protein Pores
This technology offers the computational design of protein pores that can selectively conduct ions and enable the passage of small-molecule fluorophores, offering a new approach to creating transmembrane channels with potential applications in biotechnology and medicine.